Low production of reactive oxygen species and high DNA repair: mechanism of radioresistance of prostate cancer stem cells.
نویسندگان
چکیده
BACKGROUND Cancer stem cells (CSCs) are resistant to radiotherapy and are responsible for tumor recurrence of various malignant tumors, including prostate cancer. MATERIALS AND METHODS In order to define the radioresistance mechanism of prostate CSCs, their proliferative activity, cell cycle distribution, expression of CD133 stem cell marker, reactive oxygen species (ROS) production, and DNA repair efficiency were examined using prostatospheres and adherent LNCaP cells as a model of prostate CSC and bulk model of differentiated cells, respectively. RESULTS Compared to adherent cells, prostatospheres exhibited greater number of low-to-intermediate ROS-producing cells and CD133-positive cells. Prostatospheres showed higher expression of DNA repair proteins after ionizing radiation (IR). CONCLUSION Low vulnerability to ROS-induced cellular damage and the efficient repair of IR-induced DNA injury may explain the radioresistance of prostate CSCs. Therefore, increasing ROS-induced cytotoxicity and inhibition of DNA repair in prostate CSCs may help achieve complete eradication of prostate CSCs by radiotherapy.
منابع مشابه
Effects of Copper Nanoparticles in Prostate Normal and Cancer Cell Lines
Background and purpose: In clinical treatment of cancer, improving the efficacy of drugs and targeted drug delivery have always been a fundamental problem requiring more focused solutions. The purpose of this study was to investigate the protective effects of copper nanoparticles in prostate normal and cancer cell lines. Materials and methods: In this experimental study, different concentrati...
متن کاملRadiosensitivity and Repair Kinetics of Gamma-Irradiated Leukocytes from Sporadic Prostate Cancer Patients and Healthy Individuals Assessed by Alkaline Comet Assay
Background: Impaired DNA repair mechanism is one of the main causes of tumor genesis. Study of intrinsic radiosensitivity of cancer patients in a non-target tissue (e.g. peripheral blood) might show the extent of DNA repair deficiency of cells in affected individuals and might be used a predictor of cancer predisposition. Methods: Initial radiation-induced DNA damage (ratio of Tail DNA/Head DN...
متن کاملThe Effects of Extremely Low Frequency Pulsed Electromagnetic Field on Biochemical Properties of the Prostate Cancer Cell Line, DU-145
Background: In the recent decades, there has been an increasing effort to study possible biological effects of extremely low frequency electromagnetic fields (ELF-EMFs). In this study, the effects of 50 Hz, 0.6 mT pulsed electromagnetic field on proliferation and biochemical properties, in a prostate cancer cell line, DU-145, and the simultaneous treatment of these cells with electromagnetic fi...
متن کاملEffect of Hesperetin on the level of reactive oxygen species (ROS) in gastric cancer stem cells: Short Communication
Intracellular reactive oxygen species (ROS) play an important role in cancer stem cell (CSC) function. Hesperetin (Hst) is a flavonoid that has been shown to affect cellular ROS level. The goal of this study was to investigate the effect of Hst on the level of ROS in gastric CSCs (GCSCs). MTT assay was used to evaluate cell survival. Cellular ROS level was measured using 2′,7′-dichlorofluoresci...
متن کاملMetabolic analysis of radioresistant medulloblastoma stem-like clones and potential therapeutic targets
Medulloblastoma is a fatal brain tumor in children, primarily due to the presence of treatment-resistant medulloblastoma stem cells. The energy metabolic pathway is a potential target of cancer therapy because it is often different between cancer cells and normal cells. However, the metabolic properties of medulloblastoma stem cells, and whether specific metabolic pathways are essential for sus...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Anticancer research
دوره 33 10 شماره
صفحات -
تاریخ انتشار 2013